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LETTER TO THE EDITOR 

Optimized and transferable densities from first-principles 
local density calculations 
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Laboratory of Applied Physia, 'khnical University of Denmark, 2800 Lyngly, Denmark 

Received 20 May 1991 

AbsImcL From ub ininb pseudopotential calculations of the solid we extract atomic-like 
electron densities which, when overlapped in the ctystal, reproduce Ihe self-consistent 
density eccept for those components for which lhe S ~ N C ~ U E  factor is zero. We demon- 
strate the universality of the optimized densities for different clyrtal StNCtUres  at valying 
volumes. These densities are rhe optimized choice for the Harris fUtICIiOM1. and we 
compare our result with the Finnis wntraction of the free atom density and with the 
effective medium theory a n m ~  of embedding an alom in a homogenous electron gas. 

There has been a renewed interest in non-selfconsistent total energy calculations 
since the advent of the Harris functional introduced independently by Harris [I] and 
by Fodkes and Haydock [2]. These workers exploited the stationary properly [3, 41 
of this new energy functional and demonstrated its success in molecular systems. 
Polatoglou and Methfessel [5] and, later, Read and Needs [6] studied bulk systems, 
showing that the cohesive energies, lattice constants, phonon frequencies and bulk 
moduli can be accurately determined by using overlapping free atomic densities as the 
input to the Harris functional. A well known problem using this for the input 
density, however, is the complete failure to determine surface energies [6]. Finnis 
[g resolved this difficulty by a two-parameter variation of the input density until the 
stationary value of the Harris functional was attained which gave the correct surface 
energy compared with the self-consistent result. The long-wavelength components of 
the density are especially important for the surface because of the long-range nature 
of the Coulomb interaction, so the Finnis procedure, which results in a contraction 
of the charge density, had evidently addressed this issue alheit h ?E cc! b c  ?.ay. 

The main aim of this letter is to present a means of determining optimized 
atomic-like densities from first-principles calculations of the crystalline solid that are 
transferable to different chemical environments, and in so doing we investigate the 
success of the Finnis contraction for the surface problem. The concept of a trans- 
ferable density is central in the effective medium theory (m) [SI where the atom 
is renormalid by embedding it in a homogenous electron gas. We show that this 
procedure takes into account to good measure the proper screening of the ion in the 
solid state environment since the result compares well with our optimized density. 

The total density ptot in a crystal of overlapping free atomic densities patom is 
given by 

Ptot(') = Patom(' - E p )  (1) 
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where R, is the set of lattice vectors, and we consider only one type of atom for 
convenience. We formulate the problem in reciprocal space where our arguments are 
most transparent The corresponding expression in Fourier space is 

Ptot (G)  = S(G)fat."G) (2) 

where G is a reciprocal lattice vector, and S( G) is the structure factor [9]. This 
density may be used to construct the input potential for the iteration of the Kohn- 
Sham equations [lo, 111 to a self-consistent density &&. From this result, we can 
extract an atomiolike density fop (optimiied) which is related to &:* by the structure 
factor as in equation (2). Thts optimized density depends on the crystal structure 
and volume, and is only determined on the discrete set of reciprocal lattice vectors 
for which the structure factor is non-zero. Overlapping such densities in the solid 
is designed to reproduce the correct density only for those components for which 
the structure factor is non-zero; it is not possible to retrieve all the properties of 
a system from overlapping atomic-like densities, for example the Friedel oscillations 
associated with a metallic surface are inherently non-atomiolike. Also, the well known 
occurrence of the 'forbidden' G = (2,2,2) reflection in the diamond structure [I21 
results from the wvalent bonding of the atoms and cannot be reduced to any atomio 
like spherical density. 

-1.0 
0.0 1 .o 2.0 5.0 40 
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F b r e  1. The pseudoatomic charge density p.tom(k) for atomic Al (full curve) and 
the optimized density pop(G)  for Al in the FCC latikc a0 = 3.96 A (0) showing the 
discrete shells in r o c i p m l  apace that quation (2) samples. The plum indicate the 
evolution (sec inset) 01 the components of pap(G) fa: lattice constants in the range 
3 .S  to 4.05 A, and the m show the compncnu lor AI in the diamond S I ~ U ~ C  
(a0 = 5.91 A). 

The construction of p, ( T )  therefore first requires an analytical continuation in 
reciprocal space of p,,(Gr to p O p ( E ) ,  where k is a continuous variable, before in- 
version to real space-but there 1s obviously no unique prescription for doing this. 
In figure 1 we show pato,,,(k) for atomic Al for which we have only considered the 
pseudovalence electron density [13, 141. Also presented is pop(G) which show the 
d k r e t e  shells in reciprocal space that the FCC lattice (S(G) = 1 for all G) samples, 
and which indicates the degree of deviation of the self-consistent density from the free 
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atomic density. Charge conservation fixes the G = 0 term, and the short-wavelength 
components converge rapidly to the atomic value of zero so that the essential physics 
of bulk AI is determined in the intermediate-wavelength region. Varying the lattice 
constant produces a different result, and figure 1 shows the evolution of the com- 
ponents of the optimized densities for various volumes about the equilibrium value. 
We note that the curves traced out in this manner remain remarkably parallel to 
the free atomic density (see inset) which justifies the sucoess of using overlapping 
such densities in calculating the elastic properties and phonon frequencies of the 
bulk [6, 151. We have also included in the figure the result for AI in a hypothetical 
diamond structure to investigate the structure dependence of the optimiid density. 
The challenge is to engineer the long-wavelength components to deal appropriately 
with the surface problem which we consider next. 

We first observe that for a lattice with a basis of diwbni!ar atoms, as is the me in 
a surface unit cell, it is not possible to resolve atomiclike densities for each atom- 
an analytical continuation of ptOt(G)  will correspond to a real-space density that is 
localized on the WignerSeitz cell which, when overlapped in the lattice, produces the 
self-consistent density. We studied the Al(111) ideal surface in a supercell geometry 
oriented along the z direction with four atomic layers and two vacuum layers. We 
made the s i m p l i g  assumption that all four AI atoms in the supercell are identical 
so that we extract a representative atomiclike density for the surface problem-this 
is consistent with Finnis's contraction of all the atoms in the surface unit cell, i.e. 
including the atoms in the bulk. We will see that this work well largely because the 
surface and bulk are decoupled in reciprocal space, with the main contribution to the 
surface energy being the long-wavelength components which are not present in the 
bulk. 

We have plotted in figure 2(a) the spherically averaged ppp(G) which we extracted 
from the Al(111) surface calculation and, for the sake of clarity, we consider separately 
the contribution from those components perpendicular to the surface. We note 
that the short-wavelength components for the surface relax to the bulk result in 
reciprocal space-which they must to be able to recover in real space the bulk-lie 
properties away from the surface. The components perpendicular to the surface are 
surface sensitive and mark significant deviations away from the free atom result in 
the long-wavelength region. We now numerically continue p,,(G) using a cubic 
spline, incorporating the surface-sensitive long-wavelength components and the bulk 
information in the short-wavelength region, as shown in figure 2(a). 

At this juncture, we mrsider thc pojSrb3ty of rndytically continuing p,,(G) 
from a purely bulk calculation into the long-wavelength region. One possibility is to 
consider larger lattice constants so as to derive further information in this region-but 
such cell sizes may be considered unrealistically large. We applied the am& of norm 
conservation in reciprocal space which corresponds to fixing the real-space density at 
the origin to the free atomic value-hence the ked  point assumption (ITA). There is 
no exact sum rule to justify this procedure, but we assert its usefulness in determining 
a real-space density pop(.) that is essentially atomic-like. Ideally, one must look at 
small deviations away from this assumption. We have presented in figure 2(b) the 
result of applying the ITA to the bulk components (from figure 1) and we note its 
similarity with the fully optimized density from the surface, problem. 
We have presented in figure 2(c) the corresponding result for the Fmis contracted 

atom (using the optimized parameters from (71 applied to our pseudoatom), and in 
figure 2(d) the m amatz of AI embedded in a homogenous electron gas of density 
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P g m  2. The pseudoatomic charge density p.com(k) for atomic Al (full cum)  and (a) 
the sphnicaliy averaged pOp(G) for Al(111) ideal surface for G = (O,O,G,) ( o p  
triangle) and the remaining components (full triangle). me bmken e w e  is the k t  
cubic spline through the components of pOp(G) .  @) The 6xed point assumption (RA) 
applied to the bulk componenu h m  figure 1 and (e) the Flnnia mnsuuction applied to 
p.tom(k). (d) The valence charge density patom(k) for atomic AI (full c w e )  and the 
PMP renormalized atom embedded in a homogenous electron gar of density r. = 3.0. 

r8 = 3.0. The Fmis result track very closely the fully optimized density in the 
long-wavelength region, and the EMT density appears to describe closely both the 
surface and bulk properties. 

In figure 3 (a)-(d), we show the corresponding densities in real space, noting the 
common feature of the contraction of the density toward the core region compared 
with the free atom density, and the resulting sharper attenuation of the density details. 

The fact that essentially all the calculated p,,(G) componenn fall on a single 
’universal’ electron density curve indicates a certain insensitivity of the electron density 
to the details of the surroundings. This sensitivity is, however, not so weak that the 
free atom density falls on the same curve. Indeed, the pronounced contraction of 
the charge density of the atoms in a metallic medium and the closeness of the 
charge density of Al atoms in Al to that of AI in a homogeneous electron gas 
strongly suggests that the main reason for this contraction is screening of the atomic 
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Fmre  3. The real-space densities derived from the corresponding reeipmcal-space e w e s  
in Sgurc 2 for the free p d o a t o m  (full CUIV~S), where the brokm c u m  represent (a) 
optimized density from Al(111) ideal surface, @) FPA and (c) Finnis mnstmtion. (d) 
The valence charge density (full) and m (broken). 

potential by electrons from the surrounding atoms. In linear response theory, the 
screening length in a homogeneous electron gas of density n. varies as n-'I6. This 
gives a relatively weak dependence on n for typical metallic densities, but a large 
difference between a metallic system and vacuum (n=O). In spite of the fact that 
linear screening is not adequate to describe an Al atom in a metallic system, this 
explains the observations qualitatively. 

The fully optimized density exhibits oscillations in the tail region that are also 
present in the EMT density, the latter being due to the screening of the atom in 
the homogenous electron gas. We obsewe that the FPA density in figure 3@) track 
the free atom result for a significant region in the core so that, retrospectively, one 
concludes that thb assumption may be relaxed. 

Finally, in table 1, we give results for both bulk and surface. Al using the different 
charge densities as inputs to the Harris functional, and we compare with the self- 
consistent calculations. Our results corroborate well with previous conclusions that 
free atom densities constitute good inputs to the Harris functional for the bulk but 
not for the surface. The optimized density rectifies the problem for the surface; 
we reiterate that this density does not reproduce the entire self-consistent density 
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Tabk 1. (a) Equilibrium lattice " a n t  (10, cohesive energy (E)  and bulk modulus (E) 
far AI in the facecentred cubic (FE), hexagonal close-packed (He) and cubic diamond 
(CO) s t m h  using the sdfansistent (x) and Ham'r functional methods compared 
with apuiment .  (b) Enegy of formation (E)  of the AI(111) ideal surface using the x 
and the various inputs to Ihe Hams functional. 

Suuetun Method 

(a) 
poc Experiment 117 

x 
Harris (free atom) 

Harris (free aIom) 

Harris (free atom) 

HCP x 

CD x 

4.05 3.39 a76 
3.96 423 0.92 
3.96 423 0.a 

3.97 4.17 an 
3.97 4.18 0.76 

5.91 3.42 0.45 
5.91 3.42 0.43 

Stmture Method 
E 
(eVla1om) 

0.43 
@) 
Al(111) x 

Harris (free atom) 0.08 
Hanis (optimized density) 0.44 
H a m 5  (FPA) 0.45 
Hams (Finnis) 0.43 
Hanis (embedded atom r. = 3.0)  0.40 

for reasons enunciated above (zero structure factor, spherical averaging, numerical 
interpolation, etc), but the stationary properly of the Harris functional ensures a good 
estimate of the total energy. The FPA density is shown also to be a good input to the 
Harris functional in determining the energy of the Al(ll1) ideal surface. We note 
the successful result of using the atom embedded in a homogenous electron gas as 
an input for the surface calculation. 

In summary, the main conclusions of the present work are three fold. (i) We have 
shown the? ?here is a ;;n?msa: atc"ke &.CXG~I Geiijity, which w3cn used as an 
input density to the Harris functional gives an excellent a m u n t  of the total energies 
for bulk and surface problems. (U) These atom-like densities are contracted relative to 
the free atom densities. The densities are similar to the optimized densities deduced 
by Finnis, and give credibility to his approach. (iii) The atom-like densities are also 
similar to those calculated by embedding the atom in a homogeneous electron gas. 
This gives a very simple way of understanding the contraction in terms of the screening 
properties of the surroundings. It also lends support to the basic approximation in 
the m, which is that the total electron density of the system is given by overlapping 
densities derived by embedding an atom in a homogenous electron gas. We note that 
in the embedded atom approach [17], which gives a total energy expression similar to 
that of the simplest version of the E m ,  the basic umud for the electron density is that 
of overlapping free atoms, an umud that in itself gives very poor surface energies (cf 
table 1). The success of the embedded atom method thus stems from a compensation 
of these errors by the fitting procedures used in deriving the other parameters in the 
method 
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